
March 2011

Symbolic Execution Enhanced System Testing

Misty Davies
Ames Research Center
Moffett Field, California

Corina Pasareanu
Carnegie Mellon University
Ames Research Center
Moffett Field, California

Vishwanath Raman
Carnegie Mellon University
Ames Research Center
Moffett Field, California

NASA/TM-­2011-­215962

http://www.sti.nasa.gov

March 2011

Symbolic Execution Enhanced System Testing

Misty Davies
Ames Research Center
Moffett Field, California

Corina Pasareanu
Carnegie Mellon University
Ames Research Center
Moffett Field, California

Vishwanath Raman
Carnegie Mellon University
Ames Research Center
Moffett Field, California

NASA/TM-­2011-­215962

Symbolic Execution Enhanced System Testing ∗

Misty Davies
NASA Ames Research Center

Moffett Field, CA 94035
misty.d.davies@nasa.gov

Corina Pǎsǎreanu
Carnegie Mellon University

Moffett Field, CA 94035
corina.s.pasareanu@nasa.gov

Vishwanath Raman
Carnegie Mellon University

Moffett Field, CA 94035
vishwa.raman@west.cmu.edu

ABSTRACT
We describe a novel testing technique that uses the information
computed by a symbolic execution of a program unit to guide the
generation of inputs to the system containing the unit, in such a way
that the unit’s, and hence the system’s, coverage is increased. The
symbolic execution is performed at run-time, along program paths
obtained by system level simulations. Data mining techniques are
used to obtain a first approximation of the system level input con-
straints that influence the satisfaction of the unit level constraints
computed by the symbolic execution of the unit. Function fitting is
used to incrementally approximate the behavior of the unit’s calling
context. Finally, constraint solving for the unit level constraints, to-
gether with the learned approximating functions and system level
constraints, are used to predict the system level inputs that uncover
new code regions in the unit under analysis. We demonstrate the
effectiveness of our technique on two illustrative examples and on
a realistic example from the NASA domain.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; G.1.2
[Mathematics of Computing]: Approximation

General Terms
Coverage, Testing, Learning

Keywords
System Testing, Symbolic Methods, Simulation, Machine Learn-
ing, Function Fitting

1. INTRODUCTION
Modern software, and in particular flight control software like

that written at NASA, needs to be highly reliable and hence thor-
oughly tested. System level Monte Carlo simulations are typically
used for testing NASA software. Such system level “black-box”
simulations have the advantage that they are easy to set up, since
the user only needs to specify the ranges for the system level in-
puts, but they provide few guarantees in terms of testing coverage.
Furthermore, system level simulation may be quite expensive, as
the system under analysis includes not only the flight software, but
also various models of the physical environment and of the space
∗This research was conducted at Carnegie Mellon University and
the Ames Research Center under a contract with the National Aero-
nautics and Space Administration. Reference herein to any spe-
cific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government

vehicle hardware. For example, a run using NASA’s ANTARES
simulator [1] may take hours to complete.

Recently, a new set of techniques [22, 26, 15], based on symbolic
execution [19], have emerged, for generating test cases that achieve
high code coverage. Symbolic execution, and its variant, concolic
execution, are “white-box” as they collect constraints based on the
internal code structure. The collected constraints are solved sys-
tematically to obtain inputs that exercise all the paths through the
code. However, the techniques are expensive, both in terms of pro-
gram paths to explore and in the number of complex constraints to
be solved. Therefore, they can be used effectively for testing indi-
vidual software units (inside a system) but can hardly scale to the
whole system. However, it is often the case that the unit level inputs
are constrained by the unit’s system level calling context. To obtain
realistic test cases, such constraints need to be encoded explicitly,
which would require non-trivial manual effort from developers.

The goal of the work reported here is to study the synergy be-
tween “black-box” system simulation and “white-box” unit sym-
bolic execution to overcome their weaknesses. We propose an iter-
ative procedure that uses the information computed by a symbolic
execution of a unit to guide, via machine learning techniques, the
generation of new system level inputs that increase the coverage of
the unit, and hence of the system containing the unit. Thus, our
proposed approach improves upon system level testing by increas-
ing the obtained coverage with a reduced number of test cases, and
hence with a reduced cost. Furthermore, it enables a modular, more
scalable, unit level analysis under realistic contexts, since symbolic
execution is performed only along the program paths obtained via
simulation.

Specifically, we use data mining techniques (i.e. treatment learn-
ing [21]) to obtain a first approximation of the system level in-
put constraints that influence the satisfaction of the unit level con-
straints computed by the symbolic execution of the unit. Func-
tion fitting is performed to incrementally approximate the behav-
ior of the unit’s calling context. Finally, the unit level constraints
are solved with off-the shelf constraint solvers and the approxima-
tions together with the system level constraints are used to guide the
generation of new system level inputs towards executing uncovered
code regions in the unit under analysis.

We have implemented the techniques for function fitting, treat-
ment learning and symbolic execution in the context of the analy-
sis of C programs that perform complex, non-linear mathematical
computations. We report here on the application of our approach
on several non-trivial examples from the NASA domain.

2. BACKGROUND
In this section we provide background relevant to the rest of the

paper. We introduce a program model followed by concolic exe-

cution, a technique that combines symbolic and concrete program
execution to enhance path coverage. We then introduce a machine
learning technique called treatment learning [21] followed by a
brief description of function fitting. We use these techniques to-
gether with Monte Carlo simulations for system level testing.

2.1 A Program Model
We define a program as the tuple P = (I, A, C), where I is a

set of input parameters, A is a set of assignment statements and C
is a set of conditional statements. We assume that the elements
of I are of basic types, which we define to be a type from the
set {int, short, unsigned int, char, float, double, enum}, with
each element i ∈ I taking values from a domain Di based on its
type. Further, we assume that all assignment and conditional state-
ments refer to elements in I . We define the set of all executions
of the program P as R(P) ⊆ (A ∪ C)∗; a set of finite sequences
of assignments and conditional statements visited over all possible
values of the parameters in I . An assignment over the parameters
in I , denoted �I , associates every element i ∈ I to a value in Di.
Given an assignment �I , we assume that all executions of the pro-
gram visits exactly the same finite sequence of assignments and
conditional statements; the programs are deterministic.

2.2 Concolic Execution
Concolic execution, introduced in [15, 25], is a technique that

combines concrete and symbolic program execution to increase
path coverage. The concrete execution of a program P =
(I, A, C), given an assignment �I over I , leads to a unique path in
P characterized by the conjunction of the conditional expressions
that evaluated to true. Using symbolic names for the parameters in
I , every conditional expression can be represented symbolically so
that the path taken in P is uniquely characterized by the conjunc-
tion of these symbolic terms; such a conjunction of symbolic terms
is called a Path Constraint (PC). Every PC characterizes a unique
path taken in P . Given a PC, by exhaustively negating terms in the
constraint we can generate new path constraints for paths not taken
during concrete execution of P . When each new path constraint is
submitted to a constraint solver, we have that the constraint is either
satisfiable or unsatisfiable. If the constraint is satisfiable, then by
using the satisfiable assignment over I , returned by the constraint
solver, we can guide concrete program execution to visit the path
characterized by the constraint. If the constraint is unsatisfiable,
then the path cannot be taken by any concrete program execution.
Therefore, given a program P = (I, A, C), concolic execution
attempts to exhaustively cover all paths that can be taken by a pro-
gram, by selecting assignments over the input parameters I . We
use the code fragment in Program 1 to explain the technique.

Consider the function swap in Program 1. It swaps the contents
of the pointer parameters x and y without using temporaries. We
are interested in exploring all possible paths that can be taken by
Program 1 and in particular, we would like to check if the assert
in Line 6 is ever executed; if we assume that the values of x and
y when we execute the function are such that ∗x > ∗y, then the
second condition is always false. To execute the function symbol-
ically, we first associate the parameters ∗x and ∗y with symbolic
names x and y. The PC is initially set to true. When we en-
counter the first conditional statement in Line 1, since (∗x > ∗y),
we conjoin the symbolic expression (x > y) to PC. When we
encounter an assignment, we bind the symbolic expression repre-
senting the right hand side to the symbolic variable on the left hand
side. For instance, after executing Line 2, ∗x is bound to the sym-
bolic expression x + y. At the point at which we test the second
condition in Line 5, it is easy to see that ∗x is bound to the sym-

Program 1 Swap without temporaries

void swap(int* x, int* y)
{

1 if (*x > *y) {
2 *x = *x + *y;
3 *y = *x - *y;
4 *x = *x - *y;
5 if (*x > *y)
6 assert(false); // should not happen

}
}

bolic expression ((x + y)− ((x + y)− y)) and ∗y is bound to the
symbolic expression ((x + y) − y). Since the second conditional
statement always evaluates to false, it is easy to see that if we
start with (∗x > ∗y), the value of PC when the function returns
will be true ∧ (x > y) ∧ (y ≤ x). To check if the then branch
in Line 5 is ever taken, we negate the last term in the constraint
to yield true ∧ (x > y) ∧ (y > x), which when submitted to a
constraint solver is unsatisfiable. This implies the assert in Line 6
is never executed. This exhaustive exploration technique has been
used effectively to explore paths in C programs.

2.3 Treatment Learning
Treatment learning [21] is a machine learning technique that

finds the minimal difference between two sets. It is generally used
as a crude optimization technique or as a sensitivity analysis tech-
nique. The algorithmic details of the technique can be found in [21]
and [14]. The goal of treatment learning is to determine a small

number of controllable inputs and ranges that are most likely to
lead to some output. These inputs and their ranges are known as
a treatment or a rule. This is in contrast to many other association
rule learners [4, 23, 7] that potentially find more accurate rules at a
cost of greater complexity and time [18, 20]. For this work, we are
using TAR3 as our treatment learner.

TAR3 is faster than other optimization methods for finding as-
sociation rules and handles relationships involving both continuous
and discrete variables [14]. Given a data set and a partition of that
set into a set of desired data points and a set of all remaining points,
TAR3 looks for rules that are subsets of input parameters and their
ranges, that maximize the likelihood of seeing points in the de-
sired set. The rules returned by TAR3 are subspaces of intersecting
hyperplanes. Graphically, TAR3 gives rules that are bounded by
boxes around promising data ranges. As an example, refer to Fig-
ure 1. Each asterisk in this plot represents a valuation in the input
space. In the example, our set of desired data points are the aster-
isks with small boxes around them. The ellipse represents one set
of desired data points. Given the set of desired points and all other
points, TAR3 returns a rule, which is a set of parameters and their
ranges, that increases the likelihood that we will see data like those
that we desire. The dashed rectangle around the three asterisks at
the top of the plot is the rule that TAR3 learned for the data set in
the figure.

2.4 Function Fitting
Function fitting is used to determine a predictive relationship be-

tween outputs and inputs, given some number of measurements.
Function fitting is most likely to be successful between one output
variable and a small number of input variables. We use function
fitting to approximate a relationship between the unit level inputs
given to us during concolic execution and their associated system
level input variables. We find the functions using a discrete least
squares approximation. This has the advantage of being amenable
to well-studied numerical linear algebra techniques [28, 27] and of

Figure 1: A plot showing measurements taken for two parameters.

Each asterisk represents a measurement. If an asterisk is boxed,

that data point is one that we would like TAR3 to find a rule or

treatment for. The dashed rectangle is a treatment. The dotted

ellipse shows a potential rule that was not given by the treatment

learner.

Figure 2: A plot showing y = f(x) where f(x) = ex
on the

domain 0 to 10, along with its best quadratic least squares approx-

imation p(x). The dots along the curve y = f(x) show where the

measurements were taken, and y = p(x) is the quadratic curve

that minimizes the sum of the distances between f(x) and p(x) at

the measurements x.

being less sensitive to outliers than many competing techniques [5].
Consider a function y(x) that we would like to approximate by

a function p(x). A least squares solution finds some number of
constant values ci, for i = {1, 2, 3, . . .}, that minimize the total
Euclidean distance between p(x) and y(x) at the measurements x.
This sum of distances is called the residual. Figure 2 shows the
least squares solution p(x) = c1x

2 + c2x + c3 for the function
y(x) = ex and measurements taken at x between 0 and 10 with
measurements 0.2 apart. We could use any approximating func-
tions, but choose to use polynomials as they have several advanta-
geous properties. If we assume that the relationships we are trying
to approximate are smooth, where by smooth we mean Lipschitz
continuous, then we can find a polynomial approximation that is
arbitrarily close to our desired function by the Weierstrass Approx-
imation Theorem [3]. A function that is not smooth along its entire
domain may be locally smooth, or smooth along some subinterval
of the domain. A polynomial constructed on this subset is known
as a piecewise-polynomial approximation. For a smooth function,
shrinking the subinterval on which the approximation is made al-
lows for arbitrarily close approximations with low-order polynomi-
als [24].

Table 1: A table showing the number of measurements needed in

order to fit polynomial approximations of up to cubic order for one

output variable with up to 4 input variables.

Threshold values by number of variables
Polynomial fit 1 2 3 4

linear 2 3 4 5
quadratic 3 6 10 15

cubic 4 10 20 35

Figure 3: A system S with inputs I and an embedded unit U with

inputs i.

In this work, we fit one output variable i to a subset of the input
variables I . We must solve for every constant c in front of each
term. For every unknown c, we need at least one equation, which
means we need at least one measurement. Having exactly the same
number of measurements as unknown constants ci means that we
can find an exact solution. If we have more measurements than un-
knowns, then the problem is overdetermined and the solution will
be the least squares solution. Increasing the number of variables I
increases the number of measurements needed, as does increasing
the order of the approximating polynomial, as shown in Table 1.
We refer to the minimum number of measurements needed for a
given number of variables as the Threshold.

3. APPROACH
In this paper we are concerned with increasing path coverage

during system-level testing. While concolic execution has been
shown effective in covering paths in programs, the technique fails
when the program being tested becomes too large. On the other
hand, Monte Carlo simulations may not cover interesting corner
cases even with very large sets of random assignments over system
inputs. The systems we encounter are typically large with large
non-linear fragments. We therefore find that during system level
testing, many paths leading potentially to unsafe program states are
left uncovered. Our approach aims to merge the results of learning-
based directed heuristic testing with concolic execution to increase
system level path coverage. Figure 3 captures the systems we are
interested in testing.

In the figure, we show a System Under Test (SUT) that consists
of one or more white-box program units. Each white-box unit is
an interesting code fragment that lends itself to concolic testing;
typically these are code fragments with linear constraints and of
small enough size that they can be completely covered using con-
colic execution. In Figure 3, S is a system with input parameters
I containing a unit U = (i, A, C) with unit level parameters i. A

Program 2 Prototype Linear Example

int g1 = 1, g2 = 2;
int System(int I1, int I2)
{

if (I1 > 0) g1 = I2; else g1 = -I2;
g2 = I1 + 3;
Unit(I2, I1);

}
int Unit(int i1, int i2)
{

if(i1 > 0) {
i2 = g2;
if(i2 > 0) return 0; else return 1;

} else {
i2 = g1 + 3;
if(i2 > 0) return 2; else return 3;

}
}

subset of the behavior of the system is then some function f of the
system level parameters I that computes values for the inputs i of
the unit U . Let c ∈ C denote some conditional statement in U that
was not covered during system level testing. Let Cons(c) denote
the unit level constraint, over parameters in i, associated with state-
ment c; for example if i = {v, w}, a constraint could be (v > w).
Since concolic execution of U excludes the system that instantiates
U , it generates an over-approximation of the set of paths that can
be covered during system level testing. By the same token, paths
that are unreachable in U remain unreachable in S; a path unreach-
able in the most liberal environment for U remains unreachable in
the restricted environment provided by S. If Cons(c) is satisfiable,
then a satisfying valuation�i will enable us to cover statement c at
the unit level. Our approach is then to generate assignments over
the system level parameters I , given the satisfying valuation �i at
the unit level, that can cover statement c during system level test-
ing. To solve this, we assume f is invertible and take I = f(i), for
the unknown function f , and use machine learning techniques to
approximate f . Once we have an approximation for f , we attempt
to cover statement c by composing a system level test vector using
I = f(i), evaluated for the valuation�i. We describe our approach
in detail in the next section.

4. TESTING ALGORITHMS
As a running example, consider the program in Figure 2. There

are two system level integer valued parameters I1 and I2. Further
since globals may be referred in either System or Unit, we consider
the two integer valued global variables g1 and g2 as parameters to
both System and Unit. The unit level inputs are therefore i1, i2, g1
and g2. While the program is linear, we will use this example to
illustrate key concepts in our approach.

4.1 Constraints Trees
We use concolic execution on the program fragment called Unit.

The set of input parameters is i = {i1, i2, g1, g2}. Since Unit is
small and linear we achieve full path coverage using concolic ex-
ecution. Given an assignment over the parameters in i, each path
taken in Unit is precisely characterized by the path constraint PC
when Unit returns. All such path constraints, accumulated over
all executions of Unit, are stored in a tree which we call the Con-

straints Tree. The constraints tree reflects the set of all paths that
were taken by all executions of a program unit.

In Figure 4 we have a constraints tree for Unit after some ini-
tial testing. The parameters section contains the set of parameters

[Parameters]
2 i1
3 g2
4 g1
[Tree]

7 (i1 > 0) (C, 0, 248, 0)
8 (g2 > 0) (C, 0, 250, 0)
9 (g2 <= 0) (S, 0, 250, 1)
10 (i1 <= 0) (C, 0, 248, 1)
11 ((g1 + 3) > 0) (C, 0, 261, 0)
12 ((g1 + 3) <= 0) (S, 0, 261, 1)

Figure 4: The constraints tree after some rounds of initial testing

that are involved in the constraints in the tree. The tree section
contains a textual representation of the constraints tree. The num-
ber of constraints in the tree is equal to the number of leaves in
the tree and each constraint is a conjunction of the terms encoun-
tered along the parent hierarchy of each leaf. Therefore, given the
tree in Fig 4, the set of constraints are, (i1 > 0) ∧ (g2 > 0),
(i1 ≤ 0) ∧ (g2 ≤ 0), (i1 ≤ 0) ∧ ((g1 + 3) > 0) and (i1 ≤
0) ∧ ((g1 + 3) ≤ 0). Of these constraints, (i1 > 0) ∧ (g2 > 0)
and (i1 ≤ 0)∧ ((g1+3) > 0) were covered during our initial test-
ing. The text within parentheses after each term is annotated with
a string of the form ([C|U |S|?], IN, IN, IN), where the first char-
acter is “C” if the term was true and hence the constraint leading
up to it was Covered during a run, “U” if the constraint leading up
to it is Unsatisfiable, “S” if the constraint leading up to it is Sat-

isfiable and “?” if the constraint leading up to it is unknown. By
using models returned by a constraint solver for the two satisfiable
constraints, we obtain assignments over the parameters in i that
completely cover all paths in Unit.

4.2 Observations
We consider a system S, with system level parameters I , and a

unit U within S, with unit level parameters i. We assume that the
unit can be analyzed using concolic execution. Let T be a con-
straints tree extracted by monitoring U during system level testing.
Consider nodes in T that are satisfiable at the unit level but not
covered by system level testing. Since we cannot use concolic exe-
cution at the system level, our coverage algorithm attempts to cover
all nodes that are satisfiable at the unit level using a combination of
concolic execution, treatment learning and function fitting. For a
node n ∈ T we take Cons(n) as the unit level constraint that leads
to n and that when satisfiable will cover n at the unit level. In order
to present our coverage algorithm, we first present the following
observations that are used by the algorithm.

Consider a path σ = n1, n2, . . . , nk in a constraints tree T such
that all nodes n1, n2, . . . , nk are covered by system level testing.
Since the nodes were covered, there exist vectors at the system and
unit level that are witnesses to cover the nodes in σ, i.e., for a set
of system level vectors Vi that cover node ni in σ, there exists a
corresponding set of unit level vectors vi that covered ni. We then
have the following properties of these witnesses.

OBSERVATION 1. (Monotonicity of Witnesses) For a con-

straints tree T and a path σ = n1, n2, . . . , nk of nodes in T , such

that n1, n2, . . . , nk are covered with witness sets V1, V2, . . . , Vk at

the system level and corresponding sets v1, v2, . . . , vk at the unit

level, we have, V1 ⊇ V2 ⊇ . . . ⊇ Vk and v1 ⊇ v2 ⊇ . . . ⊇ vk.

Monotonicity of Witnesses follows easily by noting that
Cons(nk) ⇒ Cons(nk−1) ⇒ . . . ⇒ Cons(n1) for the con-
straints of nodes in σ.

OBSERVATION 2. (Sufficiency of Witnesses) For a con-

straints tree T and a path σ = n1, n2, . . . , nk of nodes in T , such

that n1, n2, . . . , nk are covered with witness sets V1, V2, . . . , Vk

at the system level and corresponding sets v1, v2, . . . , vk at the

unit level, let |Vj | ≥ Threshold such that for all i ∈ [1, k] with

|Vi| ≥ Threshold, we have |Vj | ≤ |Vi|. If the relation between

the vectors in Vj and vj is not smooth for function fitting, then it is

the case that for all i ≤ j, the relation between Vi and vi is also

not smooth for function fitting.

Consider a constraints tree T and a path σ = n1, n2, . . . , nk in
T , such that all nodes that precede nk are covered during system
level testing, but node nk is not covered. Since we cannot use con-
colic execution on the entire system S, we have that Cons(nk) is
the finest symbolic path constraint, such that when Cons(nk) is
satisfiable, using the assignment that satisfies Cons(nk), we can
cover nk at the unit level. We take Term(nk) as the term corre-
sponding to the node nk and Parent(n) as the parent of a node n
in σ. Given a constraint C, we take Vars(C) as the set of param-
eters that appear in the terms of constraint C. The path constraint
Cons(nk) is then Term(n1)∧Term(n2)∧ . . .∧Term(nk). As
we cannot extend the path constraint to the system level, we would
like to learn the system level behavior as a function f , such that
I = f(Vars(Cons(nk)), via function fitting. Given Cons(nk)
is satisfiable, we can then use f to find a system level vector that
covers nk using the satisfying assignment over Vars(Cons(nk))
as returned by a constraint solver for Cons(nk). But the caveat in
this approach is that function fitting is in general difficult over large
data sets due to both the number of parameters involved and due to
the presence of discontinuities. We tackle this problem as follows:

• We attempt function fitting for a constraint C, starting at
Term(nk), progressively conjoining terms Term(ni) for
i = k − 1, k − 2, . . . , 1, stopping as soon as we succeed
in finding a smooth function. This reduces the number of
unit level parameters we consider and by the sufficiency of
witnesses uses the smallest number of data points needed to
fit a smooth function.

• We reduce the number of system level parameters for func-
tion fitting by using treatment learning. For a constraint C,
we use the data seen during system level testing to find the
subset In ⊆ I of system level parameters that have the high-
est likelihood of affecting the values of the unit level param-
eters in Vars(C).

This reduces the number of parameters for function fitting and
avoids discontinuities by focusing on finding functions that are lo-
cally smooth. For all terms in Cons(nk) that are not considered
in a given iteration of function fitting, i.e., terms in Cons(nk) but
not in C, we use treatment learning to find assignments for system
level parameters that satisfy those terms. By the monotonicity of
witnesses, we have more data points to cover these terms than those
that cover Cons(nk), thus increasing the likelihood of finding good
treatments.

4.3 Algorithm
We now describe Cover, our coverage algorithm presented in

Algorithm 1. The algorithm works as follows:
1. Lines 2–4. We perform n-factor combinatorial Monte Carlo

(MC) simulations by picking values over a space sp; a d-
dimensional space for d input parameters constrained by
their data types. In contrast to traditional random MC, n-
factor MC generates test cases such that every possible com-
bination of input parameters equal to size n appears at least
once in the test suite [9]. For every system level vector a, we
monitor the unit and capture the unit level vector b together
with the path constraint for the path taken within the unit. At
the end of this step, the set of path constraints that summarize
all the execution paths that were taken in the unit are avail-

Algorithm 1: Cover(S, U)

input : System S with inputs I with d = |I|, unit U with
inputs i

1 sp ← IRd;
2 Perform n-factor combinatorial MC simulations over

space sp;
3 (V, v) ← {(a, b) | a is a system level vector and b is the

corresponding monitored unit level vector};
4 T ← (PC from U);
5 repeat
6 T � ← T ;

// Do BFS on T
7 for (node n ∈ T using BFS) do
8 if (n and n’s sibling are covered) then

// Since we have contrasting
// data, learn a treatment

9 V � ← {a ∈ V | a covers n} and
V �� ← V \ V �;

10 (In, Rn, _) ← RunTAR3(I, V, V �, V ��);
11 else
12 if (n is satisfiable but not covered) then

// Compute fn such that
// In = fn(in)

13 �i ← model for Cons(n);
14 C ← Term(n);
15 (In, in, fn) ←

ComputeMap(C, I, V, v, n,Parent(n),�i);

// Build new testcases
16 for (n ∈ T satisfiable but not covered) do
17 Run S with a consistent valuation using fn(�in)

and ∀j ∈ I using Rj from 10;
18 T � ← T � ∪ (PC from U);
19 T ← T �;
20 until (T has no unprocessed nodes);

able in a constraints tree T ; the system and unit level vectors
are stored in sets V and v.

2. Lines 8–10. We traverse the nodes in T in breadth first order.
We run the treatment learner for each node n ∈ T that was
covered as long as its sibling is also covered; this is necessary
as treatment learning is efficient at identifying system level
parameters and their ranges that have the highest likelihood
of reaching n, in the presence of data points that differentiate
n from its sibling. This step gives us a subset In of system
level parameters and their ranges in Rn that have the highest
likelihood of reaching n.

3. Lines 12–15. For each node n ∈ T that is satisfiable, but that
was not covered by our MC simulations, we store the assign-
ment,�i, over i that satisfies the path constraint Cons(n). We
then start with a constraint C set to Term(n) with the expec-
tation that we will progressively strengthen C as we attempt
to find a system level vector to cover n. Since we want to fit a
function that maps system level inputs to the unit level inputs,
we keep track of the parameters in C in in and the restric-
tion of�i to the parameters in in in �in. We call the function
ComputeMap to find a function fn such that In = fn(in)
using function fitting.

4. Lines 17–18. We iterate over all nodes n ∈ T that are satis-
fiable at the unit level but were not covered during system

Algorithm 2: ComputeMap(C, I, V, v, n, n�,�i)

input : Constraint C such that Cons(nk) ⇒ C, system
inputs I , system level vectors V , unit level vectors
v, a node n that we want to cover, a node n� that is
in the parent hierarchy of n and a model�i for
Cons(n)

output: (In, in, fn) where In = fn(in) and
in = Vars(C))

1 in ← Vars(C);
2 �in ← restriction of�i to in;
// Find a subset of I for function
// fitting

3 V � ← {a ∈ V | a is in 20% of points closest to Cons(n)}
and V �� ← V \ V �;

4 (In, Rn, smooth) ← RunTAR3(I, V, V �, V ��);
5 if (smooth) then
6 Build map In = fn(in);
7 else

// Strengthen constraint and try
// again

8 if (n� exists) then
9 C ← C ∧ Term(n�);

10 (In, in, fn) ←
ComputeMap(C, I, V, v, n, parent(n�),�i);

11 else
// If we have no smooth relation
// between In and in, then
// walk up the parent of n
// and pick a node with Threshold
// points and attempt a linear fit

12 n�� ← n;
13 while (Parent(n��) exists) do
14 C ← C ∧ Term(Parent(n��));
15 n�� ← Parent(n��);
16 V � ← {a ∈ V | a covers n��};
17 if (|V �| ≥ Threshold) then
18 break;

19 V �� ← V \ V �;
20 (In, Rn, _) ← RunTAR3(I, V, V �, V ��);
21 in ← Vars(C);
22 Build map In = fn(in);

level testing. For each such node we run a system level
test by composing a system level vector as follows: (a) take
In = fn(�in) such that it is consistent with the ranges Rj for
all j ∈ In as returned by the treatment learner in Line 10 and
(b) for all other system level parameters j ∈ I \ In, pick a
value from the ranges Rj returned by the treatment learner
in Line 10.

The function fitting algorithm ComputeMap, shown in Algo-
rithm 2, works as follows:

1. Lines 1–4 We first compute the parameters in that occur
in the constraint C and the restriction of the model �i, for
Cons(n), to in. We then run treatment learning to isolate a
set of system level parameters In that have the highest like-
lihood of affecting unit level parameters in and determine
whether or not the data points in V and v that lead us through
the node n have a smooth relationship for function fitting.

2. Line 6 If the relationship is smooth we build the map fn such
that In = fn(in).

Figure 5: A plot showing a non-smooth relationship between a sys-

tem level and a unit level parameter. The gray region represents

values of the unit level parameter which were not measured during

experimental runs. The dotted circles surround the measured data

closest in Euclidean distance to the desired unit level data.

3. Lines 8–10 If the relationship is not smooth, then we first
strengthen constraint C by including the parent term from
Cons(n) and then recursively call ComputerMap on the
new constraint.

4. Lines 12–22 If we cannot find a smooth relationship by in-
cluding all terms in Cons(n), then we use the Sufficiency
of Witnesses to walk up the parent hierarchy of n to reach a
node n�� that has at least Threshold data points that witness
covering n��. We then attempt a linear fit using these data
points and return.

We use the treatment learning algorithm TAR3, presented in Algo-
rithm 3 for the following two purposes in our coverage algorithm.

Learning rules for covered nodes. We use TAR3 to tell us what
subset of system level inputs and ranges covered nodes at the unit
level. For every node n that was covered during system level test-
ing, if its sibling node was also covered, then we have a partition
of the data points at the system level into one set that covered n
and the other set that covered the sibling of n. We use treatment
learning with these partitions to learn rules that will either visit n
or its sibling. These rules are learnt at Line 10 of Algorithm 1 and
used subsequently at Line 16 to pick values for a subset of system
level parameters as described in the algorithm.

Learning inputs for function fitting. When we attempt to fit a
function to cover a node n, we start out with a weak constraint C
that is initially set to Term(n). This constraint is progressively
strengthened as we see in Algorithm 2. For each constraint, we
construct contrasting sets by partitioning the data points into a set
with 20% of the data points that are closest in Euclidean distance
to the constraint space and all remaining points. We use these con-
trasting sets to learn a rule that gives us a small set of system level
parameters that most influence data points closest to the constraint
space. This reduces the number of parameters for function fitting.

As a simple example, examine Figure 5, in which the desired
unit level parameter values are represented by the gray rectangle in
the center of the plot. The dashes represent data pairs seen during
program execution, and the dotted circles surround the data nearest
the PC boundary. The data inside the circles will be identified to
TAR3 as desirable data. TAR3 then returns the system level param-
eters that most affect the unit level data near the PC boundary; we
use this subset of system level parameters for function fitting.

This step of treatment learning is also used to determine whether
or not there exists a smooth relationship between a given set of sys-
tem level and unit level parameters. Figure 5 illustrates a case in
which the relationship between the unit level and system level pa-

Algorithm 3: RunTAR3(I, V, V �, V ��)

input : System level parameters I , system level vectors V
and contrasting sets V � ⊂ V and V �� = V \ V �.

output: (I �, R, smooth) where I � ⊆ I , R is a set of
ranges for each parameter in I , smooth is set to
true by examining the dataset

1 Call TAR3 with V , V � and V ��;
2 Compose I � ⊆ I , R and smooth based on the results of

running TAR3;
3 Return (I �, R, smooth);

rameters appears to be discontinuous. To the left of the PC bound-
ary, we see that a relatively small variation in system level val-
ues leads to a relatively large variation in the unit level values, and
that it is possible to get two different unit level values for the same
system level value. To the right of the PC boundary, we have an
identical situation though there is much wider variation in system
level values. In Figure 1, we see the three-dimensional equivalent
to Figure 5, where the data that leads to executions close to the PC
boundary is boxed, and TAR3 has returned two system level param-
eters in its treatment. In this figure there are two clusters of boxed
data, with a large number of undesired data points separating the
clusters, suggesting the discontinuity. We handle this discontinuity
by strengthening the constraint as described in Algorithm 2.

4.4 Discussion
We now discuss the assumptions that we make in our coverage

algorithm and then discuss the conditions under which the algo-
rithm makes progress. We make the following assumptions in our
coverage algorithm:

1. The unit U can be analyzed using concolic execution,
2. There is at least one path that is taken in the unit during sys-

tem level testing.
The first assumption is required since our approach is to use unit
level concolic execution for system level testing. The second as-
sumption may be satisfied using one of the following two ap-
proaches:

1. Iteratively choose smaller and smaller systems that enclose
the unit, till we find a system that exercises at least one path
in the unit during system level testing and

2. pick the earliest method U � up the call chain of the unit U that
has at least one path covered during system testing and run
Cover(S, U �). This increases the test vectors that explore
unit U � and hence the likelihood of taking paths in U .

We remark that by using a breadth first exploration of the con-
straints tree, we ensure that when we attempt to cover a node, all
its parent nodes have been processed using treatment learning. This
ensures that when we build a system level vector for a node n, we
have learnt ranges for all nodes in the parent hierarchy of n; the sys-
tem level vector is composed using these ranges and the function
we learnt to cover n.

REMARK 1. (Progress) In the presence of perfect function

fitting, if we have an over-approximation of the subset of sys-

tem level parameters that affect the unit level parameters in =
Vars(Cons(n)) for every node n that is satisfiable at the system

level, then the algorithm will eventually cover n.

Consider a node n, satisfiable at the system level, that cannot
be covered by considering any constraint weaker than Cons(n).
Since we progressively strengthen the unit level constraint C from
Term(n) to Cons(n), we eventually include in C all terms from
Cons(n) and all parameters, in, in Vars(Cons(n)). If now, we

find a perfect function f , such that In = f(in), then as long as
In includes all the system level parameters that affect in, we are
guaranteed to cover n. We use treatment learning to extract the
subset of system level parameters In. This step can be supplanted
with other static analysis techniques, such as [8], that learn an over-
approximation of the set In. Note that due to loops or recursion,
our algorithm may not terminate.

5. EXPERIENCE
In this section, we present our experience using the technique

proposed in this paper on several examples. The function fitting
attempts to learn a function fn for each node n that we can cover
at the unit level, such that In � fn(in) for some subset of system
level inputs In and unit level inputs in. In general, our fitted func-
tions become more accurate as we collect more data, if the actual
relationships between the desired in and In are locally smooth in
the region defined by both the collected data values and the desired
data values. This is borne out by our experience as we illustrate in
the following case studies. We have implemented our algorithms
in the context of analyzing C code. We note however, that for this
work, we have visually inspected the graphical treatments to deter-
mine whether or not TAR3’s treatments have contiguous clusters
of data points that imply a smooth relationship between system and
unit level inputs for function fitting. We propose to automate this
process in future work.

5.1 A Piecewise Linear Case Study
As our baseline example we use the simple, piecewise linear im-

plementation shown in Program 2. The function Unit is instru-
mented to perform concolic execution and graphical results are
shown in Figure 6. The relationships between the system level and
unit level parameters for this academic example can be determined
explicitly, either by hand or automatically using a tool like concolic
execution. All invocations of the Unit function begin at Node 1
in Figure 6. The relationship between the unit and system level pa-
rameters that determines whether control flow will pass from Node
1 to Node 2 or to Node 5 is i1 = I2. Therefore, if I2 > 0, then
control flow will pass to Node 2 and if I2 ≤ 0 then control flow
will pass to Node 5. For our demonstration purposes, we treat the
relationship between i1 and I2 as unknown, and try to determine it
using heuristic methods.

Our initial trial is conducted by creating the 25 test cases com-
posed of all combinations of I1 and I2 for the integer values
bounded by -2 and 2 (Algorithm 1, Lines 2–4). After running these
tests, we see that Node 4 and Node 7 within the unit are not cov-
ered, but we have the unit level constraints to cover them. The
constraints tree is shown in Figure 4. Lines 2–4 show the unit-
level parameters that the tree depends on: g2, g1, and i1. These
correspond to the identically-named variables shown in Program 2.
Lines 7–12 show the actual constraints tree for the unit. Line 12
corresponds to Node 7 in the constraint graph. The ‘S’ on that line
refers to the constraint being satisfiable at the unit level. The first
set of parentheses on line 12 give the unit level term necessary to
cover the node.

We begin by doing a breadth-first search of the tree (Algorithm
1, Lines 7–14). Lines 7 and 10 in Figure 4 are covered sibling
nodes (Algorithm 1, Line 8) and TAR3 returns the contrast rule
set that will increase the likelihood that we pass through Node 2.
TAR3 automatically uncovers the system level constraint 0.5 ≤
I2 ≤ 2, as shown by the bars in Figure 7 outlining the highest-
scoring treatment. Since TAR3 can only learn a rule for data that
is seen, there will always be a lower and upper bound on every
constraint. The boxed data in the plot is the ‘desired’ set in the

Figure 6: The complete control flow tree for the prototype example

Unit function given in Figure 4 after the initial testing. Covered

nodes are represented by solid circles and nodes not covered have

dotted outlines.

Figure 7: The bars show the system-level constraints returned by

TAR3 that we should use to guide execution through Node 2 within

the unit. All data points are shown with an asterisk. The data that

passed through Node 2 is boxed. In this case, it is possible to find a

contiguous region for all of the boxed data, as shown by the dotted

oval. If this had been a treatment for a node not covered in the con-

straints tree, a region like this would suggest that the relationship

between the unit level input i and the system level inputs I returned

by the treatment was smooth.

two contrasting sets, and is the data that passed through Node 2.
Similarly, TAR3 discovered the relationship (−2 ≤ I2 ≤ 0.5)
necessary to guide execution through Node 5. Note that we do not
expect TAR3 to exactly capture the location of the discontinuity;
the system constraint boundary between Node 2 and Node 5 will
depend on TAR3’s discretization locations. Moreover, while Node
3 and Node 6 are covered nodes, we cannot use TAR3 to learn the
necessary conditions for passing through them, since there is no
contrasting data to learn from; Node 3 is covered, but its sibling
Node 4 is not covered and similarly Node 6 is covered but Node 7
is not covered.

In order to build a relationship between nodes to be covered and
system level inputs we begin by finding the Euclidean distance be-
tween each test case and the constraint boundary for each such
node. We build two contrasting data sets by looking for the 20% of
data that is closest to the constraint boundary. For Node 4, TAR3
suggests that the value of g2 depends only on I1, and that the re-
lationship between the two is smooth. To cover Node 7, we be-

Figure 8: The highest scoring treatment for Node 7. All data points

are shown with an asterisk, and there are boxes around the data

closest to the constraint boundary. The treatment suggests that the

value of g1 depends upon both I1 and I2. It is not possible to find

a contiguous region that contains all of the boxed data, suggesting

that the relationship between the value of g1 and the system level

parameters is not smooth.

gin with the weakest constraint, namely just the term g1 ≤ −3.
For Node 7, the top-scoring treatment results are shown in Fig-
ure 8. Here we see that the desired data set consisted of five data
points spread discontinuously across the I1 and I2 space, and the
top-scoring treatment made a prediction involving only three of the
points. This is likely to happen when the entire data set is used
and the relationship between the unit level parameters of interest
and the system level parameters are not smooth; in this case, the
functional relationship between g1 and I2 has a discontinuity at
I1 = 0. We therefore should strengthen the constraint with the
term i1 ≤ 0 since we cannot find a smooth relation by consider-
ing just the term g1 ≤ −3. By the Monotonicity of Witnesses,
this yields fewer data points; there are a total of 15 data points that
passed through Node 5. We now chose as one of our two contrast
sets the 3 tests that come closest to the constraint boundary, namely
i1 ≤ 0∧g1 ≤ −3. TAR3’s top-scoring result suggested that g1 de-
pends on both I1 and I2 and that the relationship for this restricted
set is now smooth.

We now build approximations between the unit level parameters
that occur in the constraint we consider for each node and system
level parameters using Algorithm 2. We function fit between g1,
I1, and I2. In this case, the linear least squares regression analysis
has an error less than 10−15 and predicts g1 = I2, which for this
simple test case is the exact solution. Cubic function fitting for the
other node we want to cover, namely Node 4, gives us g2 = I1+3
with an error less than 10−14.

For experimentation purposes, using all 15 of the test runs that
passed through Node 5 results in an incorrect fit of g1 = −0.6 ∗
I1 − 0.2 ∗ I2; the discontinuity creates errors in the function fit-
ting. Had we used this incorrect fit in order to generate new system
level test cases we would have been unlikely to cover Node 7. By
restricting the data to those that pass through Node 5 and come
closest to satisfying the term g1 ≤ −3 corresponding to Node 7,
we learn an exact function in this case.

We now use our approximations between i and I to build new
test cases (Algorithm 1, Lines 15–17). For this simple test case,
the function fitting was exact and allowed us to quickly find the
correct solutions for I1 and I2. We note that since we must pass
through the ancestors before we can cover a node we combine the
system level parameter ranges we found previously, (Algorithm 1,

Program 3 The System Function in the Prototype Quadratic Ex-

ample. The Unit Function is the same as in Program 2, except that

the Unit Function for this case expects inputs of type double.
double g1=1.0, g2=2.0;
int System(double I1, double I2)
{

if (I1 > 0) g1 = I2; else g1 = -I2;
g2 = I1*I2+3.0*I1*I1+I2*I2;
Unit(I2, I1);

}

Figure 9: The top-scoring treatment for Node 4. All data points are

shown with a asterisk. The data closest to the constraint bound-

ary is boxed. In this case, the boxed data is contiguous and the

treatment implicates both system level parameters.

Line 10), with values determined through function fitting to pass
through both the ancestors and the node we want to cover.

5.2 A Piecewise Quadratic Case Study
The linear test case detailed in 5.1 has the advantage of being

easily understood, but does not show how we can deal with com-
plex, non-linear constraints, which are known to be problematic for
concolic or symbolic execution approaches. Our technique is more
likely to be of benefit when the relationships between the system
and the monitored unit are complicated and/or nonlinear. As a sim-
ple example of how our technique could be used for nonlinear con-
straints, we propose the example shown in Program 3. The only
differences between Program 3 and Program 2 are the use of dou-

bles instead of ints as a variable type and the nonlinear formula for
the assignment of g2 before Unit is called in the system. For this
case study, the constraints tree is identical to the one given in Fig-
ure 4 and Figure 6. Our breadth-first search over the covered nodes
gives us identical results to those found in 4.3.1.

We will build relationships for nodes N4 and N7. The results
from TAR3 for Node 4 are shown in Figure 9. The boxed data is
contiguous, suggesting that there may be a smooth relationship be-
tween the parameters. The fact that it is not possible to draw a box
around only the desired contrast set suggests that the relationship
between g2, I1 , and I2 is likely to be nonlinear.

We function fit for the nodes Node 4 and Node 7. The case for
Node 7 is identical to the piecewise linear case study. The inter-
esting case is that of Node 4. For Node 4, the quadratic least
squares fit gives a residual error of less than 10−15 for g2 =
3.0∗I12+I22+I1∗I2, which is the exact solution. The next step
is to conjoin our constraints in order to find new test cases. When
we attempt to create a system level vector that satisfies g2 ≤ 0
and is consistent with the ranges for the system level parameters

we learned in Line 10 of Algorithm 1, we discover that there is an
inconsistency. There are no real roots that satisfy the constraint for
g2 given the approximating function and the range constraints for
the parent of Node 4. Using function fitting for the parent of Node
4, namely Node 2, we see that with a residual error on the order
of 10−15 we get i1 = I2, the exact result. By simple substitution
the correct system-level constraint is I2 > 0. A close examination
of the constraint to satisfy Node 4 reveals that the two system level
constraints are unsatisfiable; there is no system level test that will
lead us to Node 4.

5.3 A Physical Case Study
We now examine a case study from the aerodynamics domain.

Assume we have code for a new, supersonic aircraft that is designed
to fly between 30,000 and 80,000 feet at Mach numbers between
0.8 and 3.0. The Mach number Ma is a ratio of the airspeed of the
plane to the speed of sound, and is calculated by measuring the ratio
of the measured air pressure Pt to the static air pressure Ps. Values
of Ma below 1 mean that the plane is traveling subsonically, while
values above 1 mean that the plane is traveling supersonically. This
aircraft has a novel control system, and the code uses a function to
predict the drag coefficient Cd so that it can update several coeffi-
cients in the yaw control law. For our system, we implemented the
part of the code that takes in three arguments from sensors: Pt, Ps,
and the altitude Alt. It uses this sensed data to calculate Ma, com-
pressible and incompressible skin friction coefficients Cf and Cfb,
and the corresponding terminal skin friction coefficients CfTerm
and CfbTerm. For subsonic compressible flow, Ma is given by
the following equation [2], where we have simplified the expression
using the constants for air:

Ma =

vuut5

"„
Pt

Ps

« 0.4
1.4

− 1

#
. (1)

For supersonic flow, Ma is found implicitly using the Rayleigh

Pitot tube formula, shown here as Equation 2.

Pt

Ps
=

„
5.76Ma2

5.6Ma2 − 0.8

«3.5
2.8Ma2 − 0.4

2.4
(2)

This equation would normally be implemented in code as a look-
up table. For our system, we solve the equation using Newton’s
Method and have checked the results against the table printed in [2].
The skin friction coefficients Cf , Cfb, CfTerm and CfbTerm
are complicated nonlinear functions of Ma and Alt, and are found
using equations from the USAF Stability and Control DATCOM
manual. [13]

The unit calculates Cd based on the skin friction and the base
drag, again based on basic DATCOM equations. The relationships
between Cd and the unit inputs are nonlinear, but the constraints
that determine what that relationship is are linear and trivial to
solve using concolic execution. We begin our testing of the sys-
tem by looking at nominal ranges for the aircraft: Alt between 30
and 80 thousand feet, Pt between 0.0145 and 25, and Ps between
0.00971 and 3.5. Performing 2-factor combinatorial testing [17]
with 5 bins for each of these parameters gives us 9 initial test cases.
Two of these cases have Pt < Ps, a physical impossibility, so
those two test cases are thrown out. The constraints tree for our
7 initial test cases are shown in Figure 10; these tests cover only
two paths through the tree. There are constraints not covered for
Cf ≤ CfTerm and for Mach numbers in the subsonic and tran-
sonic regime where Ma ≤ 1.04.

We do a breadth-first search of the constraints tree. For the nodes
at line 22 and line 18 of Figure 10 that are not covered, TAR3 sug-

[Parameters]
2 CfbTerm
3 Cf
4 Ma
5 CfTerm
6 Cfb

[Tree]
9 (Cf > CfTerm) (C, ...)
10 (Ma >= (780000 / 1000000)) (C, ...)
11 (Ma > (1040000 / 1000000)) (C, ...)
12 (Ma >= (600000 / 1000000)) (C, ...)
13 (Cfb > CfbTerm) (C, ...)
14 (Ma >= 1) (C, ...)
15 (Ma <= (2000000 / 1000000)) (C, ...)
16 (Ma > (2000000 / 1000000)) (C, ...)
17 (Ma < 1) (S, ...)
18 (Cfb <= CfbTerm) (S, ...)
19 (Ma < (600000 / 1000000)) (S, ...)
20 (Ma <= (1040000 / 1000000)) (S, ...)
21 (Ma < (780000 / 1000000)) (S, ...)
22 (Cf <= CfTerm) (S, ...)

Figure 10: The constraints tree after seven rounds of initial testing

gests that there may be a smooth relationship between the associ-
ated unit level parameters and the system level parameters Ps and
Alt. For the constraints on line 17 and lines 19-21 of Figure 10,
TAR3 suggests that there may be a smooth relationship between
Ma and the system level parameters Pt and Ps. We have only 7
initial test cases and since TAR3 suggests that the variation in the
unit level parameters near constraint boundaries of nodes not cov-
ered can be primarily explained by two of the three system level
parameters, the highest-order polynomials we will be able to fit
using the initial data will be quadratic, as shown in Table 1. We
perform function-fitting for the nodes not covered by system level
testing, first attempting to use all 7 initial data points. The ini-
tial approximation between Ma and the system level parameters
is Ma = 5.7022 + 0.0035 ∗ P 2

t − 0.0092 ∗ Ps ∗ Pt + 0.7255 ∗
P 2

s −0.0124∗Pt−3.4665∗Ps and the residual this approximation
gives for our 7 initial test cases is 0.0479. We repeat this process
to find approximations between the unit level parameters Cf , Cfb,
CfTerm and CfbTerm, and the system level parameters Ps and
Alt that were implicated by TAR3.

We now solve to find test cases for each node not covered in the
constraints tree. For each of those nodes in Figure 10 we end up
with undetermined systems (more unknowns than equations). In
addition, this is a complicated set of equations involving two non-
linear equalities and an inequality, so we attempt to solve the set of
equations graphically. We create a large number of test cases and
evaluate them, the approximations are no greater than quadratic,
so the solution of 235,000 tests (including graphing) takes 1.37
seconds in MATLAB on a laptop computer. We repeat this pro-
cess for every node we would like to cover; when we are unable
to find a solution using the quadratic approximations, we use the
linear approximations. We arbitrarily chose potential test cases and
added them to our suite. The approximated relationship between
CfTerm and the system level parameters suggests that we expand
the range of Pt to a max of 50. In this first test case expansion
we create 17 new tests based on the approximated relationships be-
tween the system and unit level parameters, execute these tests, and
use concolic execution to record the paths taken through the unit.
The resulting constraints tree has 5 covered paths with 21 covered
nodes and 12 nodes not covered—only 5 of the nodes not covered
are satisfiable. When the constraints tree after one iteration is com-
pared against the one in Figure 10, we see that the constraints at
lines 18, 20 and 22 are now covered. After two rounds of initial
testing, our method used 24 tests to illuminate a constraints tree
with 21 covered nodes and 12 nodes not covered. As a comparison

against state-of-the-art black box testing, we also generated a suite
with 25 n-factor combinatorial tests. We assume that the n-factor
combinatorial testing will obtain better coverage than pure combi-
natorial tests [9, 10]. The constraints tree generated using the 25
n-factor combinatorial tests has 16 covered nodes and 10 nodes not
covered.

6. RELATED WORK
The work related to automated testing is vast and we only high-

light here the work that is most related to our approach.
There are many approaches that use symbolic or concolic execu-

tion [29, 15, 26, 6] for automated test case generation. However,
all these approaches apply at the unit level and they do not consider
integration with system level testing, as we do here.

Our work is related to other hybrid approaches such as [30, 16].
These works combine abstraction techniques and theorem proving
for program analysis and testing but do not address the problem of
constraining the system level inputs for a more focused unit analy-
sis.

The work on carving differential unit tests from system tests [11]
extracts the components that influence the execution of a unit and
reassembles them so that the unit can be exercised as it was by the
system test. Differential unit tests are used to detect differences
between multiple unit implementations and they can not be used to
guide the system level inputs to increase coverage .

We use machine learning techniques to determine constraints on
system level inputs that lead to coverage of various regions in the
code under analysis. For the case studies presented here we used
a simple analysis to determine correlations between system level
inputs in terms of range restriction on unit inputs. However other
learning techniques, such as the Daikon invariant detector tool [12],
can be used for the same purpose.

Finally, in previous work [22] we described a symbolic execu-
tion framework that used system level simulations to improve the
precision of symbolic execution at the unit level. This was achieved
in two ways: first, the framework allows symbolic execution to be
started at any point in the program; thus, the concrete execution
of the system can be effectively used to set up the environment
for the symbolic execution of a unit in the system. However, that
work could not be used for guiding the generation of new system
level inputs to increase the coverage of the unit—which is our con-
tribution here. Furthermore, we describe in [22] how to use the
data collected during system level runs to mine constraints on the
unit level inputs (using treatment learning or Daikon, for example).
While this approach would allow more focused unit level testing,
it suffers from the drawback that the mined constraints can be un-
realistically restrictive, and thus prevent us to achieve coverage of
corner cases in the unit.

7. CONCLUSION
We described a novel testing technique that combines the

strengths of black-box system simulation with white-box unit sym-
bolic execution to overcome their weaknesses. The technique uses
machine learning, function fitting and constraint solving to itera-
tively guide the generation of system-level inputs to increase the
testing coverage. We have applied the techniques for testing com-
plex code from the aerospace domain. In the future, we plan to
study alternative approaches to the machine learning technique de-
scribed here (e.g. Daikon) and to perform a tighter integration of
the black-box and white-box techniques. We also plan to perform
a thorough evaluation of the technique to determine its utility in
practice.

8. REFERENCES
[1] A. Acevedo, J. Arnold, and W. Othon. ANTARES:

Spacecraft simulation for multiple user communities and
facilities. In AIAA, 2007.

[2] J. D. Anderson. Fundamentals of Aerodynamics. Mc-Graw
Hill, third edition, 2001.

[3] R. Bartle. The elements of real analysis. John Wiley & Sons,
second edition, 1976.

[4] S. Bay and M. Pazzani. Detecting change in categorical data:
Mining contrast sets. In KDDM, 1999.

[5] R. L. Burden and J. D. Faires. Numerical analysis.
Brooks/Cole, seventh edition, 2001.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
ACM CCS, 2006.

[7] C. Cai, A. Fu, C. Cheng, and W. Kwong. Mining association
rules with weighted items. In IDEAS, 1998.

[8] J. A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic
taint analysis framework. In ISSTA, 2007.

[9] D. Cohen, S. Dalal, J. Parelius, and G. Patton. The
combinatorial design approach to automatic test generation.
IEEE Software, 13(5):83–88, 1996.

[10] I. Dunietz, W. Ehrlich, B. Szablak, C. Mallows, and
A. Iannino. Applying design of experiments to software
testing: experience report. In ICSE, pages 205–215, 1997.

[11] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil.
Carving differential unit test cases from system test cases. In
FSE, 2006.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system
for dynamic detection of likely invariants. Sci. Comput.

Program., 69(1–3), 2007.
[13] R. Finck. USAF stability and control DATCOM. Technical

Report AFWAL-TR-83-3048, USAF, 1978.
[14] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet.

Automatically finding the control variables for complex
system behavior. ASE, 2010.

[15] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI. ACM, 2005.

[16] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and
S. K. Rajamani. SYNERGY: a new algorithm for property
checking. In FSE, 2006.

[17] K. Gundy-Burlet, J. Schumann, T. Barrett, and T. Menzies.
Parametric analysis of a hover test vehicle using advanced
test generation and data analysis. In AIAA Aerospace, 2009.

[18] R. Holte. Very simple classification rules perform well on
most commonly used datasets. Machine Learning, 11, 1993.

[19] J. C. King. Symbolic execution and program testing. CACM,
1976.

[20] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 1997.

[21] T. Menzies and Y. Hu. Data mining for very busy people.
IEEE Computer, November 2003.

[22] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing NASA software. In ISSTA, 2008.

[23] R.Agrawal, T.Imeilinski, and A.Swami. Mining association
rules between sets of items in large databases. In ACM

SIGMOD, 1993.
[24] L. Schumaker. Spline functions: basic theory.

Wiley-Interscience, 1981.
[25] K. Sen. Concolic testing. In ASE, 2007.
[26] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. In FSE, 2005.
[27] G. Strang. Linear algebra and its applications. Thomson

Learning, third edition, 1988.
[28] L. N. Trefethen and I. David Bau. Numerical linear algebra.

SIAM, 1997.
[29] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A

framework for generating object-oriented unit tests using
symbolic execution. In TACAS, 2005.

[30] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction,
theorem proving: better together! In ISSTA, 2006.

 



 

 



     

  





  





  


  












 








   





   

    


  

      

   
   

    
  






  
    

         
           
            
          
        
       
         
      

        

    

    

 

	SEEST_cover
	ConcExecTM
	SEEST_back

